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Abstract. Robots and particularly drones are especially useful in ex-
ploring extreme environments that pose hazards to humans. To ensure
safe operations in these situations, usually perceptually degraded and
without good GNSS, it is critical to have a reliable and robust state es-
timation solution. The main body of literature in robot state estimation
focuses on developing complex algorithms favoring accuracy. Typically,
these approaches rely on a strong underlying assumption: the main esti-
mation engine will not fail during operation. In contrast, we propose an
architecture that pursues robustness in state estimation by considering
redundancy and heterogeneity in both sensing and estimation algorithms.
The architecture is designed to expect and detect failures and adapt the
behavior of the system to ensure safety. To this end, we present HeRO
(Heterogeneous Redundant Odometry): a stack of estimation algorithms
running in parallel supervised by a resiliency logic. This logic carries
out three main functions: a) perform confidence tests both in data qual-
ity and algorithm health; b) re-initialize those algorithms that might be
malfunctioning; c) generate a smooth state estimate by multiplexing the
inputs based on their quality. The state and quality estimates are used
by the guidance and control modules to adapt the mobility behaviors of
the system. The validation and utility of the approach are shown with
real experiments on a flying robot for the use case of autonomous ex-
ploration of subterranean environments, with particular results from the
STIX event of the DARPA Subterranean Challenge.

1 Introduction

Robots are especially useful for accomplishing tasks that would otherwise
be impossible or highly dangerous for humans to perform; for instance, search
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and rescue missions in collapsed zones, package delivery for disaster response or
even exploration of other planetary bodies. As opposed to controlled laboratory
environments, deploying autonomous robots in real-world scenarios requires ro-
bustness and resiliency to different types of failures. Such failures can include
loss of communications, physical damage to sensors or loss of perceptual data in
degraded environments (e.g., dust, smoke or fog); and can result in damage to
the robot, injuries to humans or failure of mission-critical tasks. In this work, we
focus on a particular class of failures which are related to state estimation. These
failures are often catastrophic since they cascade down through the whole auton-
omy stack and are of particular importance on aerial robots, where autonomous
capabilities are most often limited by the state estimation quality. Hence, we
define a set of desirable ”resiliency principles” to reliably operate a system in
real-world, challenging environments:r RP1: Redundancy in hardware and algorithms to eliminate single points

of failure.r RP2: Modularity to easily integrate different components.r RP3: Self-recovery from failures in a distributed component-level fashion.r RP4: Adaptability of mobility behaviors based on estimation health status
to ensure safety.r RP5: Real-Time performance under size, weight and power constraints.

These principles are not tackled in most state estimation approaches, which
combine data from several sensors into one tightly coupled estimation engine
(e.g., [11–14]). These methods are designed and evaluated for accuracy rather
than robustness, possess a single point of failure (no RP1) and are not able
to recover upon breakdown (no RP3), leading to catastrophic failures in the
navigation stack. For example, KITTI dataset [4] benchmarks accuracy of more
than 100 approaches that fuse visual information (monocular, stereo or RGB-D
cameras), range measurements (SoNAR or LiDAR) and inertial measurements
(IMU). Methods like [1, 5, 9, 10] partially consider RP1 by exploiting hetero-
geneity and redundancy of sensors to achieve resiliency for legged, snake-like
and race car robots, respectively, but still possess a single point of failure in the
software since they use a single estimation engine. Whereas, [6] partially achieves
RP1 by detecting only measurement failures and searching for a combination
of un-compromised sensors. Furthermore, most state-of-art guidance and con-
trol modules [7] either assume that the state estimation module won’t fail; or
they try to prevent failures through perception-aware planning [2] but in their
appearance they don’t recover from it (no RP3) or adapt (no RP4).

In this work, we seek to build towards a “resilient architecture” that fol-
lows the resiliency principles stated above, considering the following modules: a)
Hardware b) State estimation and c) Guidance and control. First, the hardware
resiliency can be achieved using mechanical protections, e.g., propeller guards
for drones, and using redundant/heterogeneous sensors and actuators (RP1).
Secondly, we can prevent single points of failure (RP1) in state estimation by
combining heterogeneous redundant odometry algorithms. We propose the use
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Fig. 1: General resiliency architecture.

of a resiliency logic for supervising the overall estimation pipeline; running confi-
dence checks to verify both sensor data integrity and “health” of the algorithms;
re-initializing the failed sensors or methods (RP3); and switching (guaranteeing
smooth estimates) among all possible estimation streams to provide the best out-
put. The resiliency logic also produces a state quality measure which is used by
the guidance and control module to adapt the mobility behavior of the system
(RP4), to ensure safety and perform recovery behaviors (RP3); for example,
switching to velocity control when position estimates are bad or triggering a
safe landing behavior using attitude control when velocity estimates are not reli-
able. The modular design of HeRO (RP2) makes it very easy to leverage COTS
(commercial-off-the-shelf) odometry solutions. For example, one can easily com-
bine any number of COTS LiDAR, thermal, and visual odometry algorithms
to increase the resiliency of the system. This modular design also allows for
a selection of sensors and algorithms to accommodate for particular computa-
tional resources, power or payload, allowing to easily run minimal hardware and
software architectures in real-time (RP5).

The remainder of this article is structured as follows. In the following sec-
tion, we describe the main “resiliency architecture”, with corresponding concepts
and solutions. Validation and experimental results are presented in Section 3,
showing the feasibility of the proposed approach through real robot experiments
performed live at the STIX event in the DARPA subterranean challenge. Finally,
conclusions are given in Section 4.

2 Resiliency Architecture

We propose a framework designed to autonomously detect and adapt to failures
and the key concept behind it is to select the best available state estimation
stream, based on confidence checks that assess its quality, and adapt the behavior
of the robot by selecting accordingly the appropriate planner and controller. This
general architecture is depicted in Figure 1 and is described hereafter.

2.1 Hardware

The robot hardware consists of a set of heterogeneous and redundant sensors
that are used by the state estimation sub-system (HeRO). This can include,
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Fig. 2: Example of motivation for heterogeneity and redundancy of methods. For
(a)-(c), top left and bottom left are images from visual and thermal cameras,
respectively. Right is a point cloud from a 360 degree LiDAR. (a) Visual methods
fail with modest dust. (b) Thermal and visual approaches fail with dust and low
thermal gradients. (c) LiDAR, thermal and visual fail with intense dust.

but is not limited to, visible/infrared/thermal cameras, LiDAR (scanners or
height sensors), IMU, RaDAR or SoNAR. The sensor set is recommended to be
chosen with a diversity of physical phenomena they are based on, to diversify
the possible failure scenarios. Examples of such failure scenarios are shown in
Figure 2. Here, dust causes issues with visual sensors (Figure 2a), as does low
thermal gradient for thermal cameras (Figure 2b). Intense dust can even cause
issues with LiDARs (Figure 2c), requiring reliance on proprioceptive sensors such
as an IMU.

In addition to hardware considerations, an important factor to reduce the
chances of failure is with correct sensor placements. For example, a VIO running
on a drone has higher chances of failure if using a forward facing camera com-
pared to a downward facing camera while flying at low altitudes. However, in
the latter case, the VIO is susceptible to failure if the drone is tilting or moving
very close to the ground at high speeds; or if there is a lack of visual features
on the ground. Additionally, there may be different amounts of visual texture
or lighting in the different directions. This is the case in dark underground envi-
ronments, where illumination of the scene comes from light sources on the robot
(see Figure 3). Hence, using multiple camera orientations reduces the chances
of overall system failure at the cost of more mass, power and computational
resources.

Finally, a robust mechanical design of the robot hardware can allow autonomy
to have significantly higher tolerances to avoid failure. Notice how incorporating
redundancy, heterogeneity and mechanical robustness on robots such as drones,
can result in significantly lower flight time, due to increased weights of sensors,
however it can highly increase the probability of mission success.
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(a) (b) (c) (d)

Fig. 3: Contrasts in visual data from cameras pointing to different directions
for different robot positions. Here, to overcome the dark environment, we use
on-board illumination. (a) Forward facing near the ground: good lighting and
texture. (b) Upward facing near the ground: poor lighting and limited detail. (c)
Forward facing when flying in a large tunnel: poor illumination and no texture.
(d) Upward facing in the same scenario as (d): good illumination and ceiling
details.

2.2 Heterogeneous-redundant odometry (HeRO)

Our objective is to estimate the following robot states with respect to a “world”
frame along with their quality:

p ∈ R3 Position represented in world frame
R ∈ SO(3) Orientation represented in world frame
v ∈ R3 Linear velocity
ω ∈ R3 Angular velocity
a ∈ R3 Linear acceleration
α ∈ R3 Angular acceleration
Qi ∈ {Good,Bad} Quality of i, with i ∈ [p,R,v,ω,a,α]

These states are used (when available) for motion planning and control, whereas
the quality metrics are used by the behavior planner to select the appropriate
mobility service for the current mission task. Note that all attributes are rep-
resented in robot body frame unless stated otherwise. Moreover, we restricted
the quality of the state to binary values although it can be easily generalized to
higher resolutions and even continuous representations.

To obtain the best available estimation, we use HeRO, consisting of three
main components: a) A stack of odometry algorithms running in parallel, b) A
set of confidence checks on the quality of the estimation and c) A resiliency logic.
All these modules are detailed in the following.

A. Odometry Algorithms
Any single estimation algorithm will have circumstances in which may fail; cir-
cumstances that are particular to the sensor/algorithm combination. Hence, we
run in parallel a stack of heterogeneous odometry algorithms (e.g., visual, Li-
DAR, thermal, RaDAR or SoNAR), to increase the probability of overall success
by having non-overlapping failure scenarios. There is no special requirement on
the type of algorithm, with the ability to incorporate either tightly or loosely
coupled approaches. However, to take advantage of all possible mobility services,
there is a need for estimating position, orientation, velocity and, ideally, accel-
eration. If the method is only estimating positions, it can be fused with IMU
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Fig. 4: Different failure modes for odometry algorithms.

measurements (in a loosely coupled fashion) to obtain the rest of the state. This
might be the case for pure visual or LiDAR odometry methods (VO and LO,
respectively).

B. Confidence Checks and Health Monitoring
The detection of malfunctioning odometry streams is a fundamental feature to
select the best state estimation. Hence, it is of interest to define the possible
failures in this context. At a high level, a failure is any estimation that jeop-
ardizes robot controls or planning. Early identification of failures can allow for
system recovery or, if recovery is not possible, performing safety fall-backs to
keep the robot integrity. HeRO detects the failures by running confidence checks
at different levels of implementation. First, HeRO performs confidence checks at
hardware-level by checking the data from sensors. As an example, this type of
checks in case of using cameras or LiDARs might include (but are not limited
to):r Rate of sensor output.r Overall image intensity or its variation within the image.r Distance between first and last return of a LiDAR beam.r Number of invalid scan points.

Next, HeRO performs confidence checks using data from the odometry algo-
rithms, where the goal is to catch the failures depicted in Figure 4, ideally before
they occur or at an early stage. These failures can come in a variety of forms, be-
ing a gap in the state updates, a divergence of the estimate, or rapid jumps. The
failure could be caused by limitations of the sensor or by the overall odometry
algorithm. The checks to detect these failures include:r Rate of algorithm output (to catch gaps).r Rate of change of the position/velocity estimate (to catch jumps).r Trace of the estimation covariance matrix (to catch divergence).

Notice how we can also run checks dependant on particularities of the methods;
for instance number or quality of features tracked; or number or quality of inlier
features (e.g., from matching/RANSAC).
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C. Resiliency Logic

The resiliency logic in HeRO is based on the various odometry estimates and
respective confidence checks, to output a resulting state with its quality mea-
sure, which will be used by the planner and controller. Moreover, it supervises
the individual odometry estimates and requires them to re-initialize in case of
detecting failures.

An initial version of the logic can use a predefined ranking of odometry
algorithms to select the best estimation method, thus selecting the approach
with highest priority that is not failing. When that algorithm fails a confidence
check, it is required to re-initialize while the next algorithm in the ranking is
selected. These switches are provoked only in case of failure of the current source
in order to minimizes the number of switches. A more advanced logic can consider
a selection criteria weighted by the quality of the algorithm. This comparison
between streams also provides a third avenue for confidence checks; for instance,
with three or more streams a voting scheme can be used to identify outliers.

The resiliency logic has to guarantee continuity in the resulting estimate while
switching between streams. This consistency in the output can be achieved by
iteratively composing an incremental state from the selected odometry source to
the state from the previous estimate (e.g., a method estimating pose will re-start
with its origin at 0, hence if we switch to it after its re-initialization, we have to
concatenate its estimation with the previous resulting state of HeRO).

The resulting quality of the estimation is generated depending on the con-
fidence checks in the odometry source being used. Depending on this quality
we can enable different mobility services, shown in Table 1 and detailed in the
following section. Note that in Table 1 we incorporated the platform height
estimation (gpz) as a separate column because it can be directly used for the
controller (altitude hold) and is an intermediate step between having all position
estimates (p) or just velocities (v). Similarly, this sensor can be used to estimate
vertical velocities (vz). These velocity-only states can appear either because they
are directly provided by a method (e.g., optical flow) or because the logic de-
cided to keep using an approach which is partially failing; for instance, using
the output of a method that runs on IMU only while we reset the other update
sources. In the latter, velocities can be trusted for short periods. In Table 1, we
assume the IMU is not failing, providing good attitude (R), angular velocities
(ω) and accelerations (a,α) with biases estimated by those methods previously
working. If that is not the case we consider an immediate landing in “open loop”
control mode.

2.3 Planning and Control

The estimated state will be used for planning and control (see Figure 1). In this
work we consider three main layers for these modules:r Behavior planning: A state machine which chooses the type of behaviors

the robot should execute depending on the available quality of the estimated
state. The possible decisions are depicted in the right-most column of Table 1.



8 A. Santamaria-Navarro et al.

Case State Quality Mobility

No. p gpz vx, vy vz R, ω, a, α

1 Global

2 Local

3 Local

4 Closed Loop on z

5 Attitude

Table 1: Summary of available mobility services given different estimation qual-
ities resulting from HeRO. The colour code is Good Bad .

r Motion planning: Generates desired trajectories for the robot according
to the decisions of the behavior planner.r Control: Tracks desired trajectories and closes the loop directly on the
provided state estimates from HeRO.

With regards to the state estimation quality, we distinguish the following mo-
bility services, which include the above mentioned layers:

r Global: This group of services require good robot position estimates and
may include (but are not limited to) building occupancy-grid maps, running
path planning algorithms for reaching a desired location in the map, or
reasoning and executing high-level global goals. Notice how many of these
planning and control algorithms rely on continuous estimates of position,
which HeRO provides.r Local: Without reliable position estimates, the robot is restricted to plan
and execute local actions depending on reliable attitude, velocity and ac-
celeration estimates. Examples of such behaviors can include wall-following,
obstacle avoidance or hover-in-place. These behaviors are often robust and
locally optimal [3]; however, they often require some tuning and assumptions
on the topology of the environment (e.g., flying through a long tunnel can
be accomplished with wall-following behavior).r Attitude: If it is not possible to maintain high-quality estimation of either
positions or velocities, then specific attitude behaviors can be performed to
keep the integrity of the robot or even to recover. For example, a drone
can land using attitude control and slowly reduce its thrust. Once landed,
the chances of being able to re-initialize odometry algorithms dramatically
increase (e.g., camera artifacts like motion blur are reduced by not moving
or the effect of dust is mitigated by not spinning the propellers).

Notice how some odometry algorithms can give mixed results on their state esti-
mation quality; for instance, estimating reliably velocities but intermittently the
positions. In this work, we take advantage of as much reliable state information
as possible. An example is obtaining height estimations from a single ranger,
helping to close the loop only on the vertical axis (see case 4 in Table 1).
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Fig. 5: The Roll-o-copter : a hybrid terrestrial and aerial multi-rotor robot

3 Validation and experiments

In this section, we show the validity of our state estimation framework with a
specific implementation. We set up the resiliency logic supervising three odom-
etry algorithms using vision, a LiDAR and an IMU as sensing modalities. The
first algorithm is a loosely coupled VIO with stereo cameras facing forward, a
tightly coupled VIO with a monocular camera facing up, and a LiDAR-inertial
odometry (LIO) algorithm with a 360 degree, 16 channel LiDAR. This setup pro-
vides redundancy of sensors and heterogeneity in the algorithmic solution. In the
following we describe in detail the hardware, odometry algorithms, confidence
checks and multiplexing approaches used. Moreover we include experimental re-
sults obtained from the STIX event of the DARPA subterranean challenge1.

3.1 Hardware

We make use of the Roll-o-copter : a hybrid terrestrial and aerial multi-rotor
equipped with two passive wheels (see Figure 5). Although this robot is designed
to take advantage of both aerial and ground terrains, in this work we focus on the
aerial mobility of the vehicle and use it as flying-only platform. In flight, Roll-o-
copter behaves like a normal multi-rotor, with a standard set of electronic speed
controllers (ESCs), motors and propellers. It possesses a Pixhawk2 v2.1 as flight
controller, as well as an on-board Intel NUC i7 Core computer. In addition to
the standard multi-rotor hardware, we equipped the robot with the following
sensors:

r RealSense3 RGBD camera. Composed by a stereo pair of infrared (IR)
cameras, an RGB camera and a structured light IR projector.r Velodyne 360◦ VLP-164 LiDAR. Rotary head with 16 LiDAR rangers,
providing a point cloud with a 360◦ azimuth angle and ±15◦ elevation angle
field of view.

1 https://www.subtchallenge.com
2 http://www.pixhawk.org
3 https://software.intel.com/en-us/realsense/d400
4 https://velodyneLiDAR.com/vlp-16.html
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r Garmin LiDAR Lite v3. We use a 1D LiDAR pointing downwards.r Pixhawk v2.1 flight controller. Composed by an on-board IMU (3-axis
gyroscopes and accelerometers) and processing, including a Kalman filter for
its own state estimation.r Qualcomm Snapdragon5. A self-contained flight controller accompanied
by an IMU (3-axis gyroscopes and accelerometers), a high resolution forward
facing camera and a low resolution upward facing camera for tightly coupled
VIO.

3.2 Algorithm Stack

We validate the HeRO approach with two VIOs and one LIO in the stack of meth-
ods, which provide the required capabilities to fly in complex and perception-
challenging environments. These methods are running in parallel at different
frequencies and using different sensor sources (RP1), as detailed in the follow-
ing.r Infrared Stereo Visual Inertial Odometry. We take advantage of ORB-

SLAM2 (OS2) [8] running using images from the IR stereo camera (Re-
alSense RGBD). This approach produces 6D pose estimates (3D translations
and 3D rotations) and can run up to 60Hz. These estimations are fused with
IMU data (running at a frequency of 1kHz) using an EKF (running in the
Pixhawk flight controller). Using a stereo odometry algorithm enables us to
re-initialize it in flight without the dependence of parallax movements such
as in monocular VIO methods. To have continuous odometry estimates when
available we disable the loop closure modules of this approach.r Monocular Visual Inertial Odometry. We use the Snapdragon Flight
platform from Qualcomm (QSF) running their COTS VIO from mvSDK as
the second source of odometry. As in the case of OS2 odometry, here we
also incorporated some modifications to allow re-initialization during flight
(RP3). The incorporation of this approach also demonstrates the capability
of our framework to easily integrate closed-source commercial VIO solutions
(RP2). The state estimation runs at 25Hz.r LiDAR Inertial Odometry. The third source of odometry consists on
fusing 6D pose estimates from a LiDAR odometry (LO) approach with IMU
data within a regular EKF scheme. The pose estimates from the LO are
produced at 20Hz and we use the same IMU as for the IR Stereo VIO,
but this time with the data externalized from the Pixhawk flight controller
running at 200Hz.

Notice how the above choices allow us to use three different sensing modalities
(IR stereo forward-facing, monochrome monocular upward-facing and LiDAR)
with three different estimation algorithms (RP1). All sensors and approaches
are prone to different possible failures, minimizing the occasions where they all
fail simultaneously, thus achieving the required level of robustness, as show in
the following sections and the accompanying video.

5 https://developer.qualcomm.com/hardware/qualcomm-flight-pro
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(a) (b) (c)

Fig. 6: Real experiment. (a) Frontal camera with the robot idle on the ground.
(b) Frontal camera during flight. (c) External view during flight.

3.3 Resiliency logic

In these experiments we use the following confidence tests, set by observing the
types of failures the methods are prone to.r Frequency: The most common mode of failure of OS2 occurs due to feature

tracking failures when the drone is executing a fast motion or due to presence
of featureless environments. In this case, the frequency of the measurement
updates goes down while failing. This policy helps catching “data gaps”.r Estimation covariance: The uncertainty of the estimated pose from QSF
significantly increases during failure, the state estimate starts to diverge.
Hence, we detect these failures by setting a threshold on the trace of the
estimation covariance matrix (experimentally determined). This policy helps
catching “data divergence”.r Sudden position changes: If the estimation method results are inconsis-
tent, it might still produce an output although the covariance of the estima-
tions might not reflect it. To detect these failures we set a confidence check
on sudden position changes to catch “data jumps”.

3.4 Navigation in a mine, example of usage in the STIX event of
DARPA subterranean Challenge

The experimental scenario is part of the DARPA subterranean challenge6 and,
specifically, we show results from the official integration event (STIX). We pro-
vide an accompanying video with some of the flights. In these experiments we de-
ploy the Roll-o-copter in the entrance of an iron ore mine and set an autonomous
exploration mission. Figure 6 shows an example of one of the experimental runs,
demonstrating how challenging the environment is in terms of perception and
justifies the use of a resilient state estimation approach (e.g., notice the dusty
environment comparing Figure 6a where the robot did not start with 6b and 6c
while flying). In these experimental runs of the main STIX event we were able
to accomplish our missions with Roll-o-copter, exploring two different entrances
of the mine and validate our resilient state estimation strategy.

An example of these runs (mine entrance 1) is shown in Figure 7 with regu-
lar re-initialization of LIO. Here we show the different types of re-initialization,

6 https://www.subtchallenge.com/
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(a) LiDAR odometry (LO) X-Y-Z positions.

(b) VIO (OS2) and LIO X-Y-Z position estimates.

(c) VIO (OS2) and LIO X velocity estimates.

Fig. 7: Results from a real experiment with the Roll-o-copter flying autonomously
in a tunnel (see Figure 6).

depending on the effected odometry stream. A first case consists of partly re-
initializing a loosely-coupled odometry approach (LO, in this case), for example
resetting one of the inputs of the IMU fusion algorithm. In these cases, we can
detect discontinuities by checking the individual estimations (e.g., LO). To avoid
inconsistencies, whenever we re-initialize a particular singular source (e.g., VO
or LO) that is subsequently fused with an IMU, we keep track of pose disconti-
nuities with a transform manager, similarly as done by the resiliency logic for its
estimation output while switching between odometry streams. Figure 7a shows
this behavior, and how re-initializing manually every 5s a LiDAR odometry (LO)
provokes LO position estimates to jump. Thanks to the transform manager, the
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fusion of this LO with an IMU (LIO) is kept consistent and continuous (see Fig-
ure 7b where we show the LIO output and an OS2 VIO for comparison purposes).
Figure 7c shows an example of resulting x-body axis velocities of all methods in
the HeRO stack, running two VIOs (VIO1 is OS2 and VIO2 is QSF) and the
LIO test for the same experiment. In this run the resiliency logic was directly
selecting VIO1 (used for autonomous navigation) and it requested several times
a re-initialization of the VIO2 due to failures.

The modularity of the presented state estimation framework allow us to
run different methods on the HeRO stack. For example, in the case of a drone
where the available payload does not allow carring a 3D LiDAR, we can still use
redundant VIOs. An example of this case is shown in Figure 8 corresponding to
a different experiment in the entrance 2 of the mine. In these figures we present
the following observations that validates the use of the presented approach:r VIO estimations: we show the estimated position (first three plots) and

velocities (latter three plots) of OS2 (VIO1 in red with squares) and QSF
(VIO2 in green with triangles), together with the respective output of the re-
siliency logic (blue solid line). Notice how the resilient output does not always
overlap with the estimations because it keeps continuity during switches.r Channel selection: On all Figure 8 we overlap the channel selected by the
resiliency logic (magenta and specification on the right axis) while switching
between methods.r Re-initialization triggers: Vertical lines in all plots.r Mobility services: Available services depending on the quality of the state
estimation, shown in all plots with coloured areas. This includes: Take-
off, waypoint navigation and landing using positions (global), wall-following
strategies (local) or hovering and landing (attitude). In particular for this
experiment, for safety reasons we land after 3s of dead-reckoning flight. This
strategy helps us to let the dust settle down and thanks to the re-initialization
of the methods, we are able to recover the full global mobility services.
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Fig. 8: Results of a real experiment running two VIOs (VIO1 is OS2 and VIO is QSF) together with
the resiliency logic. In these plots we include: a) Estimations; b) Resiliency logic output (selection
of (a) guaranteeing continuity); c) Channel selection to form (b); d) Triggers of re-initialization of
methods (vertical lines); and resulting mobility services available depending on the status (coloured
areas and right vertical axis).
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4 Conclusions

In this work, we present a robust and resilient navigation architecture pursuing
redundancy (RP1), modularity (RP2), self-recovery (RP3), adaptability (RP4)
and real-time performance (RP5). This architecture has considerations on the
hardware, state estimation and planning and control modules.

In particular, for hardware we propose to use redundant measurement sources
(RP1), based on different physical phenomenas to minimize the probability of
failures, by mounting sensors in different configurations to maximize the in-
formation gain. Moreover, we advocate for a robust mechanical design of the
robot to have significantly higher tolerances to avoid failure. For state estima-
tion, we present HeRO: An heterogeneous and redundant odometry estimator
which enables resilient state estimation in perceptually degraded environments.
We run several odometry estimation approaches in parallel(RP1) that use data
from redundant-heterogeneous sensors which are supervised by a resiliency logic.
HeRO is agnostic to the type of odometry approach used and also allows an easy
incorporation of commercial-of-the-shelf solutions (RP2). The resiliency logic
checks the estimation integrity by running confidence tests on sensor data and
odometry estimations and, in case of failure, triggers re-initialization of mal-
functioning elements (RP3). Moreover, HeRO provides quality estimates which
are used by planning and control modules to adapt the mobility behavior of the
robot to ensure safety (RP4). In that sense, we use different mobility services de-
pending on the overall state estimation quality, entailing global (i.e., with good
global localization), local (i.e., with good velocity estimates) or attitude (i.e.,
attitude-only estimation) modalities. Having accurate confidence checks is a crit-
ical component to the proposed architecture, an area where further research is
welcomed. Such research is not only critical to achieving resilient state estimation
but can also be in planning behaviors to prevent failures (e.g. perception-aware
planning).

Our experiments at the DARPA’s STIX event of the Subterranean Challenge
showed that using the proposed approach we are able to safely navigate in per-
ceptually degraded environments in presence of heavy dust. Redundancy (RP1)
allows the drone to fly for longer distances without failure since it required only
one of several estimation sources to work. The system is capable of running in
real-time (RP5) using COTS solutions (RP2). It is able to adapt the behav-
ior (RP4) on estimation failures by triggering safety landing and was able to
recover (RP3) once the dust settled down, resuming the mission. This architec-
ture, which follows the resiliency principles, enables us to bring the drones in
the real-world where failure is not an option.
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